Geosimsat

Geographic Satellite Simulator Simulate location changes in a satellite network in real time.

Simulate in real time specific events in a satellite network: Generate events for: - Satellite position - based on TLE data specs - horizontal links down above and below a critical latitude - new / break connections to ground stations - new / break connections to end hosts

GroundStation dataclass

Represents an instance of a ground station

Source code in emulation/geosimsat.py
53
54
55
56
57
58
@dataclass
class GroundStation:
    '''Represents an instance of a ground station'''
    name: str
    position: GeographicPosition
    uplinks: list[Uplink] = field(default_factory=list)

SatSimulation

Runs real time to update satellite positions

Source code in emulation/geosimsat.py
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
class SatSimulation:
    '''
    Runs real time to update satellite positions
    '''

    # Time slice for simulation
    TIME_SLICE = 10
    MIN_ALTITUDE = 35

    def __init__(self, graph: networkx.Graph):
        self.graph = graph
        self.ts = load.timescale()
        self.satellites: list[Satellite] = []
        self.ground_stations: list[GroundStation] = []
        self.client: simclient.Client = simclient.Client("http://127.0.0.0:8000")
        self.calc_only = False
        self.min_altitude = SatSimulation.MIN_ALTITUDE
        self.zero_uplink_count = 0
        self.uplink_updates = 0

        for name in torus_topo.ground_stations(graph):
            node = graph.nodes[name]
            position = wgs84.latlon(node[torus_topo.LAT], node[torus_topo.LON])
            ground_station = GroundStation(name, position)
            self.ground_stations.append(ground_station)

        for name in torus_topo.satellites(graph):
            orbit = graph.nodes[name]["orbit"]
            ts = load.timescale()
            l1, l2 = orbit.tle_format()
            earth_satellite = EarthSatellite(l1, l2, name, ts)
            satellite = Satellite(name, earth_satellite)
            self.satellites.append(satellite)

    def updatePositions(self, future_time: datetime.datetime):
        sfield_time = self.ts.from_datetime(future_time)
        positions = []
        ground_positions = []

        # Update satellite positions
        for satellite in self.satellites:
            satellite.geo = satellite.earth_sat.at(sfield_time)
            lat, lon = wgs84.latlon_of(satellite.geo)
            satellite.lat = lat
            satellite.lon = lon
            satellite.height = wgs84.height_of(satellite.geo)

            # Create position update
            position = simapi.SatellitePosition(
                name=satellite.name,
                lat=float(satellite.lat.degrees),
                lon=float(satellite.lon.degrees),
                height=float(satellite.height.km)
            )
            positions.append(position)

        # Add ground station positions
        for station in self.ground_stations:
            ground_pos = simapi.GroundStationPosition(
                name=station.name,
                lat=float(station.position.latitude.degrees),
                lon=float(station.position.longitude.degrees)
            )
            ground_positions.append(ground_pos)

        # Collect satellite-to-satellite links
        satellite_links = []
        for node1, node2 in self.graph.edges():
            if node1.startswith('R') and node2.startswith('R'):  # Satellite nodes start with R
                status = self.graph.edges[node1, node2].get("up", True)
                satellite_links.append(simapi.Link(
                    node1_name=node1,
                    node2_name=node2,
                    up=status
                ))

        # Collect ground station uplinks
        ground_uplinks = []
        for station in self.ground_stations:
            uplinks_list = []
            for uplink in station.uplinks:
                uplinks_list.append(simapi.UpLink(
                    sat_node=uplink.satellite_name,
                    distance=int(uplink.distance)
                ))
            if uplinks_list:
                ground_uplinks.append(simapi.UpLinks(
                    ground_node=station.name,
                    uplinks=uplinks_list
                ))

        # Send position updates to API
        data = simapi.SatellitePositions(
            satellites=positions,
            ground_stations=ground_positions,
            satellite_links=satellite_links,
            ground_uplinks=ground_uplinks
        )
        self.client.update_positions(data)
        #print(f"{satellite.name} Lat: {satellite.lat}, Lon: {satellite.lon}, Hieght: {satellite.height.km}km")
        print(f"{station.name} Lat: {station.position.latitude.degrees}, Lon: {station.position.longitude.degrees}")

    @staticmethod
    def nearby(ground_station: GroundStation, satellite: Satellite) -> bool:
        return (satellite.lon.degrees > ground_station.position.longitude.degrees - 20 and
                satellite.lon.degrees < ground_station.position.longitude.degrees + 20 and
                satellite.lat.degrees > ground_station.position.latitude.degrees - 20 and 
                satellite.lat.degrees < ground_station.position.latitude.degrees + 20)

    def updateUplinkStatus(self, future_time: datetime.datetime):
        '''
        Update the links between ground stations and satellites
        '''
        self.uplink_updates += 1
        zero_uplinks: bool = False

        sfield_time = self.ts.from_datetime(future_time)
        for ground_station in self.ground_stations:
            ground_station.uplinks = [] 
            for satellite in self.satellites:
                # Calculate az for close satellites
                if SatSimulation.nearby(ground_station, satellite):
                    difference = satellite.earth_sat - ground_station.position
                    topocentric = difference.at(sfield_time)
                    alt, az, d = topocentric.altaz()
                    if alt.degrees > self.min_altitude:
                        uplink = Uplink(satellite.name, ground_station.name, d.km)
                        ground_station.uplinks.append(uplink)
                        print(f"{satellite.name} Lat: {satellite.lat}, Lon: {satellite.lon}")
                        print(f"{ground_station.name} Lat: {ground_station.position.latitude}, Lon: {ground_station.position.longitude}")
                        print(f"ground {ground_station.name}, sat {satellite.name}: {alt}, {az}, {d.km}")
            if len(ground_station.uplinks) == 0:
                zero_uplinks = True
        if zero_uplinks:
            self.zero_uplink_count += 1


    def updateInterPlaneStatus(self):
        inclination = self.graph.graph["inclination"]
        for satellite in self.satellites:
            # Track if state changed
            satellite.prev_inter_plane_status = satellite.inter_plane_status
            if satellite.lat.degrees > (inclination - 2) or satellite.lat.degrees < (
                -inclination + 2
            ):
                # Above the threashold for inter plane links to connect
                satellite.inter_plane_status = False
            else:
                satellite.inter_plane_status = True

    def send_updates(self):
        for satellite in self.satellites:
            if satellite.prev_inter_plane_status != satellite.inter_plane_status:
                for neighbor in self.graph.adj[satellite.name]: 
                    if self.graph.edges[satellite.name, neighbor]["inter_ring"]:
                        self.client.set_link_state(satellite.name, neighbor, satellite.inter_plane_status)

        for ground_station in self.ground_stations:
            links = []
            for uplink in ground_station.uplinks:
                links.append((uplink.satellite_name, int(uplink.distance)))
            self.client.set_uplinks(ground_station.name, links)

    def run(self):
        current_time = datetime.datetime.now(tz=datetime.timezone.utc)
        slice_delta = datetime.timedelta(seconds=SatSimulation.TIME_SLICE)

        # Generate positions for current time
        print(f"update positions for {current_time}")
        self.updatePositions(current_time)
        self.updateUplinkStatus(current_time)
        self.updateInterPlaneStatus()
        self.send_updates()

        while True:
            # Generate positions for next time step
            future_time = current_time + slice_delta
            print(f"update positions for {future_time}")
            self.updatePositions(future_time)
            self.updateUplinkStatus(future_time)
            self.updateInterPlaneStatus()
            sleep_delta = future_time - datetime.datetime.now(tz=datetime.timezone.utc)
            print(f"zero uplink % = {self.zero_uplink_count / self.uplink_updates}")
            print("sleep")
            if not self.calc_only:
                # Wait until next time step thenupdate
                time.sleep(sleep_delta.seconds)
                self.send_updates()
            current_time = future_time

updateUplinkStatus(future_time)

Update the links between ground stations and satellites

Source code in emulation/geosimsat.py
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
def updateUplinkStatus(self, future_time: datetime.datetime):
    '''
    Update the links between ground stations and satellites
    '''
    self.uplink_updates += 1
    zero_uplinks: bool = False

    sfield_time = self.ts.from_datetime(future_time)
    for ground_station in self.ground_stations:
        ground_station.uplinks = [] 
        for satellite in self.satellites:
            # Calculate az for close satellites
            if SatSimulation.nearby(ground_station, satellite):
                difference = satellite.earth_sat - ground_station.position
                topocentric = difference.at(sfield_time)
                alt, az, d = topocentric.altaz()
                if alt.degrees > self.min_altitude:
                    uplink = Uplink(satellite.name, ground_station.name, d.km)
                    ground_station.uplinks.append(uplink)
                    print(f"{satellite.name} Lat: {satellite.lat}, Lon: {satellite.lon}")
                    print(f"{ground_station.name} Lat: {ground_station.position.latitude}, Lon: {ground_station.position.longitude}")
                    print(f"ground {ground_station.name}, sat {satellite.name}: {alt}, {az}, {d.km}")
        if len(ground_station.uplinks) == 0:
            zero_uplinks = True
    if zero_uplinks:
        self.zero_uplink_count += 1

Satellite dataclass

Represents an instance of a satellite

Source code in emulation/geosimsat.py
31
32
33
34
35
36
37
38
39
40
41
42
43
44
@dataclass
class Satellite:
    '''
    Represents an instance of a satellite
    '''

    name: str
    earth_sat: EarthSatellite
    geo: Geocentric = None
    lat: Angle = 0
    lon: Angle = 0
    height: Distance = 0
    inter_plane_status: bool = True
    prev_inter_plane_status: bool = True

Represents a link between the ground and a satellite

Source code in emulation/geosimsat.py
46
47
48
49
50
51
@dataclass
class Uplink:
    '''Represents a link between the ground and a satellite'''
    satellite_name: str
    ground_name: str
    distance: int

run(num_rings, num_routers, ground_stations, min_alt, calc_only)

Simulate physical positions of satellites.

num_rings: number of orbital rings num_routers: number of satellites on each ring ground_stations: True if groundstations are included min_alt: Minimum angle (degrees) above horizon needed to connect to the satellite calc_only: If True, only loop quicky dumping results to the screen

Source code in emulation/geosimsat.py
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
def run(num_rings: int, num_routers: int, ground_stations: bool, min_alt: int, calc_only: bool) -> None:
    '''
    Simulate physical positions of satellites.

    num_rings: number of orbital rings
    num_routers: number of satellites on each ring
    ground_stations: True if groundstations are included
    min_alt: Minimum angle (degrees) above horizon needed to connect to the satellite
    calc_only: If True, only loop quicky dumping results to the screen
    '''
    graph = torus_topo.create_network(num_rings, num_routers, ground_stations)
    sim: SatSimulation = SatSimulation(graph)
    sim.min_altitude = min_alt
    sim.calc_only = calc_only
    sim.run()